Issue 24, 2013

Synthesis and DFT calculations of spirooxaphosphirane complexes

Abstract

In situ formed Li/Cl phosphinidenoid complexes [Li(12-crown-4)][M(CO)5(ClPC5Me5)] 3a–c (M = Cr, Mo, W) reacted with cyclobutanone (4), cyclopentanone (5) and cyclohexanone (6) in Et2O to yield the first P-C5Me5 substituted C3-spirofused oxaphosphirane complexes 7a–c, 8a and 9a,a′. In the case of cyclopentanone and 1a the outcome of the reaction in THF was different: here the formation of 8a along with (anionic) phosphinoate complexes 14a and 15a was observed, the latter possess an unusual ring-opened oxaphosphirane and 2-cyclopentylidenecyclopentanone as co-ligands to the lithium cation. NMR, IR and MS data as well as single-crystal X-ray structures in the case of 7a–c, 8a, 9a and 15a are reported. DFT calculations on the parent 1-oxa-2-phosphaspiro[2.n]alkane pentacarbonylchromium(0) complexes 10 (a: n = 2; b: n = 3; c: n = 4; d: n = 5) revealed that both ring strain energies and G(r) values decrease significantly as the spiroring size increases. This is caused by an increase in the exocyclic α bond angle at the oxaphosphirane C3 atom, hence decreasing the s-character of the corresponding orbitals involved in endocyclic bonds at C3 and thus becoming better suited for accommodation of small ring angles.

Graphical abstract: Synthesis and DFT calculations of spirooxaphosphirane complexes

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2013
Accepted
26 Apr 2013
First published
09 May 2013

Dalton Trans., 2013,42, 8897-8906

Synthesis and DFT calculations of spirooxaphosphirane complexes

C. Albrecht, E. Schneider, M. Engeser, G. Schnakenburg, A. Espinosa and R. Streubel, Dalton Trans., 2013, 42, 8897 DOI: 10.1039/C3DT50556A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements