Issue 21, 2013

The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity

Abstract

A novel, multi-walled carbon nanotubes (CNT) modified white C3N4 composite (CNT/white C3N4) with enhanced visible-light-response photoactivity was prepared. The white C3N4 and CNT combined together and formed the CNT/white C3N4 composite due to electrostatically-driven self-assembly with the hydrothermal method. The as-prepared white C3N4 and CNT/white C3N4 composite photocatalyst were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-vis absorption spectra, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). The photoelectrochemical it curves were tested using several on–off cycles of light irradiation. The photoactivity of the catalysts was evaluated by degrading methylene blue (MB) dye solution. The results showed that the photoactivity for the degradation of MB solution was in the following order: CNT/white C3N4 composite > C3N4 > the white C3N4. The photoactivity of the CNT/white C3N4 composite was 66.5% and 34.5% higher than that of the white C3N4 sample and that of the C3N4 at 1.5 h, respectively. The degradation rate of the CNT/white C3N4 photocatalyst was almost 8.1 times as high as that of the white C3N4. The results indicated that CNT played an important role, which led to the efficient separation of the photo-generated charge carriers. The reason why the photoactivity of the CNT/white C3N4 was much higher than that of C3N4 and the white C3N4 was discussed. A possible mechanism of CNT on the enhancement of composites' visible light performance was also proposed.

Graphical abstract: The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2012
Accepted
27 Feb 2013
First published
28 Feb 2013

Dalton Trans., 2013,42, 7604-7613

The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity

Y. Xu, H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang and G. Cai, Dalton Trans., 2013, 42, 7604 DOI: 10.1039/C3DT32871F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements