Issue 40, 2013

Controlled synthesis of Mn3O4nanoparticles in ionic liquids

Abstract

This work describes a simple one-step synthesis of Mn3O4 nanoparticles by thermal decomposition of [Mn(acac)2] (acac = acetylacetonate) using imidazolium ionic liquids (ILs) and a conventional solvent, oleylamine, for comparison. The Mn3O4 nanoparticles were characterized by XRD, ATR-FTIR, TEM, Raman, UV/VIS and magnetometry techniques. The addition of 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide IL (BMI·NTf2) yielded a smaller particle size (9.9 ± 1.8 nm) with better dispersion and more regular sizes than synthesis using oleylamine as the solvent (12.1 ± 3.0 nm). The complete conversion of the precursor to Mn3O4 nanoparticles occurred after 96 h at 180 °C for the reaction performed in BMI·NTf2. However, under these reaction conditions in oleylamine, no precursor was detected, but two different phases were observed: a major phase corresponding to Mn3O4 and a minor phase corresponding to MnO2. Magnetometry revealed that Mn3O4 nanoparticles synthesized in either oleylamine or BMI·NTf2 exhibited ferrimagnetic behavior at low temperatures, whereas they were paramagnetic at room temperature. As expected, the blocking temperature and the coercivity decreased with the size of nanoparticles. Our results demonstrate that reaction conditions such as time, and the nature of the ionic liquid play important roles in determining the size of Mn3O4 nanoparticles.

Graphical abstract: Controlled synthesis of Mn3O4 nanoparticles in ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2012
Accepted
30 Jul 2013
First published
01 Aug 2013

Dalton Trans., 2013,42, 14473-14479

Controlled synthesis of Mn3O4 nanoparticles in ionic liquids

R. Bussamara, W. W. M. Melo, J. D. Scholten, P. Migowski, G. Marin, M. J. M. Zapata, G. Machado, S. R. Teixeira, M. A. Novak and J. Dupont, Dalton Trans., 2013, 42, 14473 DOI: 10.1039/C3DT32348J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements