Issue 17, 2013

Magnetic responsive polymer composite materials

Abstract

Magnetic responsive materials are the topic of intense research due to their potential breakthrough applications in the biomedical, coatings, microfluidics and microelectronics fields. By merging magnetic and polymer materials one can obtain composites with exceptional magnetic responsive features. Magnetic actuation provides unique capabilities as it can be spatially and temporally controlled, and can additionally be operated externally to the system, providing a non-invasive approach to remote control. We identified three classes of magnetic responsive composite materials, according to their activation mode and intended applications, which can be defined by the following aspects. (A) Their ability to be deformed (stretching, bending, rotation) upon exposure to a magnetic field. (B) The possibility of remotely dragging them to a targeted area, called magnetic guidance, which is particularly interesting for biomedical applications, including cell and biomolecule guidance and separation. (C) The opportunity to use magnetic induction for thermoresponsive polymer materials actuation, which has shown promising results for controlled drug release and shape memory devices. For each category, essential design parameters that allow fine-tuning of the properties of these magnetic responsive composites are presented using key examples.

Graphical abstract: Magnetic responsive polymer composite materials

Article information

Article type
Tutorial Review
Submitted
10 Feb 2013
First published
02 May 2013

Chem. Soc. Rev., 2013,42, 7099-7116

Magnetic responsive polymer composite materials

J. Thévenot, H. Oliveira, O. Sandre and S. Lecommandoux, Chem. Soc. Rev., 2013, 42, 7099 DOI: 10.1039/C3CS60058K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements