Issue 45, 2013

Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives

Abstract

Modifying conventional materials with new recipes represents a straightforward yet efficient way to realize large-scale applications of new materials. Electrochemically reduced graphene oxide (ERGO) coated carbon fibres (CFs), prepared as fibre-like supercapacitor electrodes, exhibited excellent electrochemical energy storage performance. Upon addition of only a small amount (∼1 wt%) of ERGO, the hybrid fibres showed superior electrochemical capacitances (nearly three orders of magnitude enhanced) compared to pure CFs in both aqueous and gel electrolytes. Meanwhile, the energy density did not decrease notably as the power density increased. The superior capacitive performance could be attributed to the synergistic effect between wrinkled and porous ERGO sheets and highly conductive CFs. This fibre electrode material also offered advantages such as easy operation, mass production capability, mechanical flexibility and robustness, and could have an impact on a wide variety of potential applications in energy and electronic fields.

Graphical abstract: Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives

Supplementary files

Article information

Article type
Communication
Submitted
24 Sep 2013
Accepted
04 Oct 2013
First published
07 Oct 2013

Phys. Chem. Chem. Phys., 2013,15, 19550-19556

Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives

Y. Cao, M. Zhu, P. Li, R. Zhang, X. Li, Q. Gong, K. Wang, M. Zhong, D. Wu, F. Lin and H. Zhu, Phys. Chem. Chem. Phys., 2013, 15, 19550 DOI: 10.1039/C3CP54017K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements