Issue 43, 2013

Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas

Abstract

Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge–charge, dipole–dipole and charge–dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

Graphical abstract: Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2013
Accepted
09 Aug 2013
First published
13 Sep 2013

Phys. Chem. Chem. Phys., 2013,15, 18944-18950

Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas

S. E. Grefe, D. Leiva, S. Mastel, S. D. Dhuey, S. Cabrini, P. J. Schuck and Y. Abate, Phys. Chem. Chem. Phys., 2013, 15, 18944 DOI: 10.1039/C3CP53104J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements