Issue 27, 2013

Assessment of femtosecond laser induced periodic surface structures on polymer films

Abstract

In this work we present the formation of laser induced periodic surface structures (LIPSS) on spin-coated thin films of several model aromatic polymers including poly(ethylene terephthalate), poly(trimethylene terephthalate) and poly carbonate bis-phenol A upon irradiation with femtosecond pulses of 795 and 265 nm at fluences well below the ablation threshold. LIPSS are formed with period lengths similar to the laser wavelength and parallel to the direction of the laser polarization vector. Formation of LIPSS upon IR irradiation at 795 nm, a wavelength at which the polymers absorb weakly, contrasts with the absence of LIPSS in this spectral range upon irradiation with nanosecond pulses. Real and reciprocal space characterization of LIPSS obtained by Atomic Force Microscopy (AFM) and Grazing Incidence Small Angle X-ray Scattering (GISAXS), respectively, yields well correlated morphological information. Comparison of experimental and simulated GISAXS patterns suggests that LIPSS can be suitably described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice. Fluorescence measurements, after laser irradiation, provide indirect information about dynamics and structure of the polymer at the molecular level. Our results indicate that the LIPSS are formed by interference of the incident and surface scattered waves. As a result of this process, heating of the polymer surface above its glass transition temperature takes place enabling LIPSS formation.

Graphical abstract: Assessment of femtosecond laser induced periodic surface structures on polymer films

Article information

Article type
Paper
Submitted
10 Apr 2013
Accepted
09 May 2013
First published
13 May 2013

Phys. Chem. Chem. Phys., 2013,15, 11287-11298

Assessment of femtosecond laser induced periodic surface structures on polymer films

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno and M. Castillejo, Phys. Chem. Chem. Phys., 2013, 15, 11287 DOI: 10.1039/C3CP51523K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements