Jump to main content
Jump to site search

Issue 25, 2013
Previous Article Next Article

High polarization of nuclear spins mediated by nanoparticles at millikelvin temperatures

Author affiliations

Abstract

Nuclear magnetic resonance (NMR) techniques are extensively used in many areas of basic and clinical research, as well as in diagnostic medicine. However, NMR signals are intrinsically weak, and this imposes substantial constraints on the amounts and concentrations of materials that can be detected. The signals are weak because of the low energies characteristic of NMR and the resulting very low (typically 0.0001–0.01%) polarization of the nuclear spins. Here, we show that exposure to very low temperatures and high magnetic fields, in conjunction with nanoparticle-mediated relaxation enhancement, can be used to generate extremely high nuclear polarization levels on a realistic timescale; with copper nanoparticles at 15 mK and 14 T, 13C polarization grew towards its equilibrium level of 23% with an estimated half-time of about 60 hours. This contrasts with a 13C half-time of at least one year in the presence of aluminium nanoparticles. Cupric oxide nanoparticles were also effective relaxation agents. Our findings lead us to suspect that the relaxation may be mediated, at least in part, by the remarkable magnetic properties that some nanoparticle preparations can display. This methodology offers prospects for achieving polarization levels of 10–50% or more for many nuclear species, with a wide range of potential applications in structural biology and medicine.

Graphical abstract: High polarization of nuclear spins mediated by nanoparticles at millikelvin temperatures

Back to tab navigation

Publication details

The article was received on 26 Mar 2013, accepted on 08 May 2013 and first published on 09 May 2013


Article type: Paper
DOI: 10.1039/C3CP51274F
Citation: Phys. Chem. Chem. Phys., 2013,15, 10413-10417
  •   Request permissions

    High polarization of nuclear spins mediated by nanoparticles at millikelvin temperatures

    J. R. Owers-Bradley, A. J. Horsewill, D. T. Peat, K. S. K. Goh and D. G. Gadian, Phys. Chem. Chem. Phys., 2013, 15, 10413
    DOI: 10.1039/C3CP51274F

Search articles by author

Spotlight

Advertisements