Issue 41, 2013

Ultrafast branching in the excited state of coumarin and umbelliferone

Abstract

In the present work we have explored the ultrafast relaxation network of coumarin and umbelliferone (7-hydroxy-coumarin) using time-resolved femtosecond spectroscopy and quantum chemical calculations. Despite the importance of the photophysical properties of coumarin derivatives for applications in biomedicine, the low fluorescence quantum yield of coumarin itself has not been fully understood so far. On the basis of our combined experimental and theoretical results we suggest a model for the ultrafast decay after photoexcitation incorporating two parallel radiationless relaxation pathways: one within the initially excited state via ring opening and the other one by transition into a dark state along the carbonyl stretching mode. The fluorescence quantum yield is determined by the position of the branching point relative to the Franck–Condon region which is strongly influenced by interactions with the environment and the substitution pattern. This model is finally capable of giving a comprehensive account of the striking differences observed in the photophysical behavior of coumarin as opposed to umbelliferone.

Graphical abstract: Ultrafast branching in the excited state of coumarin and umbelliferone

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2013
Accepted
27 Aug 2013
First published
02 Sep 2013

Phys. Chem. Chem. Phys., 2013,15, 17846-17861

Ultrafast branching in the excited state of coumarin and umbelliferone

C. M. Krauter, J. Möhring, T. Buckup, M. Pernpointner and M. Motzkus, Phys. Chem. Chem. Phys., 2013, 15, 17846 DOI: 10.1039/C3CP52719K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements