Issue 46, 2013

Synthesis of Bi6Mo2O15 sub-microwires via a molten salt method and enhancing the photocatalytic reduction of CO2 into solar fuel through tuning the surface oxide vacancies by simple post-heating treatment

Abstract

Monoclinic phase Bi6Mo2O15 sub-microwires consisting of MoO4 tetrahedra have been successfully synthesized by a molten salt method. The wide-bandgap sub-microwire exhibits photocatalytic activity toward the photoreduction of CO2 into CH4. The existence of surface oxide vacancies enhanced the photocatalytic activity, which can be easily tuned via different post-heating temperatures, through capturing photo-generated electrons at the surface, thus being beneficial for the separation of electrons and holes and prolonging the lifetime of the electrons.

Graphical abstract: Synthesis of Bi6Mo2O15 sub-microwires via a molten salt method and enhancing the photocatalytic reduction of CO2 into solar fuel through tuning the surface oxide vacancies by simple post-heating treatment

Supplementary files

Article information

Article type
Communication
Submitted
29 Jun 2013
Accepted
12 Sep 2013
First published
12 Sep 2013

CrystEngComm, 2013,15, 9855-9858

Synthesis of Bi6Mo2O15 sub-microwires via a molten salt method and enhancing the photocatalytic reduction of CO2 into solar fuel through tuning the surface oxide vacancies by simple post-heating treatment

P. Li, Y. Zhou, W. Tu, R. Wang, C. Zhang, Q. Liu, H. Li, Z. Li, H. Dai, J. Wang, S. Yan and Z. Zou, CrystEngComm, 2013, 15, 9855 DOI: 10.1039/C3CE41274A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements