Jump to main content
Jump to site search

Issue 42, 2012
Previous Article Next Article

Hemifusion of giant unilamellar vesicles with planar hydrophobic surfaces: a fluorescence microscopy study

Author affiliations

Abstract

Vesicle adhesion and fusion to interfaces are frequently used for the construction of biomimetic surfaces in biosensors and drug delivery. Ubiquitous in cell biology, vesicle fusion involves the transformation of two separate membranes into one contiguous lipid bilayer. In distinction, the deposition of vesicle membranes to hydrophobic surfaces requires the transformation of a lipidic bilayer into a monomolecular layer – a topologically distinct process termed hemifusion. Here, we used hydrophobically terminated self-assembled monolayers (SAMs) on solid surfaces to track the hemifusion of fluorescently labeled giant unilamellar vesicles (GUVs) at the single vesicle level with video time resolution (≈53 ms). We observed that a dilute monolayer, consisting of lipid extracted from the outer GUV leaflet, spreads outward across the hydrophobic surface from the vesicle adhesion site. Subsequently, bilayer hemifusion occurs by vesicle rupture near the hydrophobic surface, followed by spreading of lipid in a dense monolayer. GUV lipids thus transfer to the SAM surface in two concentric zones: an outer hemifusion zone comprises lipids drawn from the outer GUV leaflet and an inner hemifusion zone comprises lipids from both the inner and outer GUV leaflets and grows at a rate of ≈1000 μm2 s−1 (dA/dt = 970 ± 430 μm2 s−1 in n = 22 independent experiments). This growth rate is quantitatively consistent with the assumption that the spreading of the monolayer is entirely driven by the difference in surface energies of the hydrophobic and the lipid-covered SAM surfaces, which is dissipated by friction of the spreading monolayer on the SAM. Lipid transfer between the inner and outer GUV leaflets occurs via a hemifusion pore that forms early in the process near the membrane contact site. This pore also permits expulsion of water from the GUV interior as the vesicle contracts onto the contact site.

Graphical abstract: Hemifusion of giant unilamellar vesicles with planar hydrophobic surfaces: a fluorescence microscopy study

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 26 Mar 2012, accepted on 03 Aug 2012 and first published on 04 Sep 2012


Article type: Paper
DOI: 10.1039/C2SM25702E
Citation: Soft Matter, 2012,8, 10877-10886
  •   Request permissions

    Hemifusion of giant unilamellar vesicles with planar hydrophobic surfaces: a fluorescence microscopy study

    G. H. Zan, C. Tan, M. Deserno, F. Lanni and M. Lösche, Soft Matter, 2012, 8, 10877
    DOI: 10.1039/C2SM25702E

Search articles by author