Issue 21, 2012

Tuning polymersome surfaces: functionalization with dendritic groups

Abstract

The conjugation of dendrons having varying peripheral functionalities to polymer vesicles, commonly referred to as polymersomes, provides an opportunity to significantly alter the polymersome surface chemistry in a single step while leaving intact the block copolymers responsible for assembly. In this work, polymersomes with surface azide groups were prepared from poly(1,2-butadiene)-poly(ethylene oxide) (PBD-PEO) and poly(ε-caprolactone)-PEO (PCL-PEO) block copolymers and were functionalized with polyester dendrons having focal point alkyne moieties and peripheral hydroxyls, amines, or guanidines. The release rates of a small molecule rhodamine B and a rhodamine B-labeled protein from naked and functionalized polymersomes were investigated and the presence of dendritic groups was found to have a minimal effect. All of the naked and functionalized polymersomes were found to be nontoxic at all concentrations tested, except for the guanidine functionalized polymersomes which did impart some toxicity at the highest concentrations tested. The cell uptake of the different polymersomes was compared and it was found that the guanidine functionalized polymersomes exhibited increased cell uptake relative to all other materials. Further studies of this phenomenon suggested that the uptake is mediated by endocytosis and possibly direct translocation across the membrane.

Graphical abstract: Tuning polymersome surfaces: functionalization with dendritic groups

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2012
Accepted
10 Apr 2012
First published
27 Apr 2012

Soft Matter, 2012,8, 5947-5958

Tuning polymersome surfaces: functionalization with dendritic groups

R. C. Amos, A. Nazemi, C. V. Bonduelle and E. R. Gillies, Soft Matter, 2012, 8, 5947 DOI: 10.1039/C2SM25172H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements