Issue 31, 2012

Delayed fracture in gels

Abstract

Subject to a subcritical load, a swollen polymeric gel may hesitate for a prolonged period of time without showing any macroscopic symptom, and then break suddenly. Such a phenomenon is usually referred to as the delayed fracture in gels. In this paper, we present a possible mechanism for the delayed fracture in gels from the continuum and fracture mechanics point of view. Using a continuum visco-poroelastic model for polymeric gels, we calculate the evolution of the inhomogeneous stress field around a pre-existing crack, in consequence of the coupled viscoelastic creep and solvent migration. We invoke the instantaneous energy release rate as the local driving force for a crack, and find it to be an increasing function of time. With the dissipation from viscoelastic creep and solvent migration excluded, the criterion for crack advancing is that the instantaneous energy release rate equals the intrinsic fracture energy of the polymer. The fracture delay could thus be attributed to the time needed for viscoelastic creep and solvent migration to bring the instantaneous energy release rate to the level of the intrinsic fracture energy. For most swollen gels, solvent migration is the limiting process, and therefore the delay time depends on the size of a pre-existing crack in a similar way as common diffusion-limited processes. Finally, by assuming a specific size distribution of microcracks, we provide a simple statistical analysis towards the lifetime prediction of a swollen gel.

Graphical abstract: Delayed fracture in gels

Article information

Article type
Paper
Submitted
09 Mar 2012
Accepted
21 May 2012
First published
26 Jun 2012

Soft Matter, 2012,8, 8171-8178

Delayed fracture in gels

X. Wang and W. Hong, Soft Matter, 2012, 8, 8171 DOI: 10.1039/C2SM25553G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements