Issue 5, 2012

Charge-controlled metastable liquid–liquid phase separation in protein solutions as a universal pathway towards crystallization

Abstract

We demonstrate that a metastable liquid–liquid phase separation (LLPS) in protein aqueous solutions can be induced by multivalent metal ions at room temperature. We determine the salt and protein partitioning in the two coexisting phases. The structure factor obtained by small angle X-ray scattering provides direct evidence for a short-ranged attraction, which leads to the metastability of the LLPS. An extended phase diagram with three control parameters (temperature, protein and salt concentration) provides a conclusive physical picture consistent with a criterion for the second virial coefficient. The presented isothermal control mechanism of the phase behavior opens new perspectives for the understanding of controlled phase behavior in nature. Furthermore, we discuss the application of this framework in predicting and optimizing conditions for protein crystallization.

Graphical abstract: Charge-controlled metastable liquid–liquid phase separation in protein solutions as a universal pathway towards crystallization

Supplementary files

Article information

Article type
Communication
Submitted
20 Oct 2011
Accepted
01 Dec 2011
First published
15 Dec 2011

Soft Matter, 2012,8, 1313-1316

Charge-controlled metastable liquid–liquid phase separation in protein solutions as a universal pathway towards crystallization

F. Zhang, R. Roth, M. Wolf, F. Roosen-Runge, M. W. A. Skoda, R. M. J. Jacobs, M. Stzucki and F. Schreiber, Soft Matter, 2012, 8, 1313 DOI: 10.1039/C2SM07008A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements