Issue 5, 2012

Confinement induced lateral segregation of polymer coated nanospheres

Abstract

The equilibrium structures of polymers end-tethered to nanoparticles or to nanomicelles interacting with surfaces have been studied theoretically. Polymer chains chemically grafted to nanoparticles are laterally immobile. On the other hand, nanosized polymer micelles formed by polymer chains conjugated with lipids, have end-tethered chains that are laterally mobile within the self-assembled structure. Using a molecular theory, we investigated the influences of the mobile nature of the tethered chains and the nanoscale dimension of the anchoring surface on the structures and interactions of the polymers during the process of binding of the nanoparticle to a surface. We show that polymer chains with bidisperse molecular weight distributions end-tethered to a nanomicelle/nanoparticle surface segregate upon approach to a surface. The shorter chains preferentially locate in the vicinity of the surface, while the longer ones are excluded from the region between the micelle and the surface and thus become more concentrated on the opposite side of the micelle surface. The extent of this segregation is controlled by the overall surface coverage and compositions of the tethered chains, and the sizes of the short and long chains. Combining lateral mobility of the polymer tether with an end-binding capability of the chain (e.g., through a ligand–receptor interaction) can give rise to an enhancement of the interaction of the polymer nanoparticle with a surface. The results demonstrate that laterally mobility of tethered chains is an important aspect that needs to be taken into account in designing polymeric nanoparticles with enhanced surface interaction properties.

Graphical abstract: Confinement induced lateral segregation of polymer coated nanospheres

Article information

Article type
Paper
Submitted
12 Aug 2011
Accepted
01 Dec 2011
First published
21 Dec 2011

Soft Matter, 2012,8, 1688-1700

Confinement induced lateral segregation of polymer coated nanospheres

R. J. Nap, Y. Won and I. Szleifer, Soft Matter, 2012, 8, 1688 DOI: 10.1039/C2SM06549E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements