Issue 12, 2012

Organic electrochemical transistors monitoring micelle formation

Abstract

Organic electrochemical transistors (OECTs) exploit electrolyte gating to achieve the transduction of ionic currents. Therefore, they are ideally suitable to sense different chemo/bio species dissolved in the electrolyte. Current modulation in OECTs relies on doping or dedoping of the OECT channel by electrolyte ions. Nevertheless the role played by the specific physicochemical properties of an electrolyte on OECT operation is largely unknown. Here we investigate OECTs, making use of aqueous solutions of the micelle-forming cationic surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte. Micelle-forming salts are remarkable model systems to study the doping and dedoping mechanism of OECTs, because the aggregation of dissociated ions into micelles at the critical micelle concentration permits to modify the size and the type of the species that dope or dedope the OECT channel in situ. The current modulation of OECTs using a CTAB electrolyte shows a marked increase close to the critical micellar concentration. The measurement of the transistor's drain current as a function of CTAB concentration provides a simple, fast method to detect the formation of micelles from dissociated ions.

Graphical abstract: Organic electrochemical transistors monitoring micelle formation

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Jul 2012
Accepted
29 Aug 2012
First published
29 Aug 2012

Chem. Sci., 2012,3, 3432-3435

Organic electrochemical transistors monitoring micelle formation

G. Tarabella, G. Nanda, M. Villani, N. Coppedè, R. Mosca, G. G. Malliaras, C. Santato, S. Iannotta and F. Cicoira, Chem. Sci., 2012, 3, 3432 DOI: 10.1039/C2SC21020G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements