Issue 19, 2012

Cryogenically direct-plotted alginate scaffolds consisting of micro/nano-architecture for bone tissue regeneration

Abstract

Alginate, which can be derived from brown seaweed, is a well-known anionic linear polysaccharide. Alginate has been used extensively for tissue regeneration because it accelerates epithelialization and granular tissue formation, as well as encapsulating various growth factors due to its rapid gelation in calcium chloride. Although alginate is a good candidate as a natural tissue engineering material, difficulties in processing and its low mechanical properties as a porous structure remain important limitations. In previous work, we introduced multi-layered scaffolds using natural biomaterials, mainly collagen and chitosan, which were fabricated using a cryogenic direct-plotting process. The fabricated scaffolds showed good cellular activities; however, problems with regards to mechanical properties remained due to the presence of micropores. To overcome this limitation, we developed a new fabrication process that resulted in alginate scaffolds consisting of micropores in the shell and nanopores in the core region of a single strut. These alginate scaffolds exhibited good structural stability and a Young's modulus that was increased tenfold in the dry state in comparison to alginate scaffolds with a homogeneous micropore structure. The hierarchical scaffold showed highly viable cells in vitro, as well as sufficient alkaline phosphatase activity and calcium mineralization for bone tissue regeneration in comparison to a control alginate scaffold, which was fabricated using a conventional freeze-drying method. These results suggest that alginate scaffolds with a hierarchical structure have potential for use in hard tissue regeneration.

Graphical abstract: Cryogenically direct-plotted alginate scaffolds consisting of micro/nano-architecture for bone tissue regeneration

Article information

Article type
Paper
Submitted
02 May 2012
Accepted
13 Jun 2012
First published
24 Jul 2012

RSC Adv., 2012,2, 7578-7587

Cryogenically direct-plotted alginate scaffolds consisting of micro/nano-architecture for bone tissue regeneration

H. Jin Lee and G. H. Kim, RSC Adv., 2012, 2, 7578 DOI: 10.1039/C2RA20836A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements