Issue 42, 2012

Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures

Abstract

The ability of self-assembling multivalent DNA-binding dendrons to interact with biological targets is modified by co-assembly with two novel low-molecular-weight cholesterol-functionalised PEG units, one based on triethylene glycol (Chol-PEG-3) and one on an octaethylene glycol (Chol-PEG-8). The addition of either PEG lipid affected the co-assembled nanostructure surface charge and size in different ways depending on the structure of the self-assembling DNA-binding dendron. Co-assembly with Chol-PEG-8 enhanced DNA binding, while Chol-PEG-3 inhibited it. Insertion of Chol-PEG-8 into the aggregates modified their ability to cross a model mucus layer, the details of which can be understood in terms of a balance between the mucoadhesivity due to the surface charge of the nanoscale aggregates and that due to the PEG groups. This study demonstrates that the interaction of nanoscale assemblies with biological systems depends on a number of different factors in a sometimes unpredictable way. Given how simply multiple building blocks can be combined by self-assembly, we conclude that self-assembled multivalent systems have great potential for optimisation to maximise their biological and clinical activity.

Graphical abstract: Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures

Article information

Article type
Paper
Submitted
10 Aug 2012
Accepted
14 Sep 2012
First published
03 Oct 2012

Org. Biomol. Chem., 2012,10, 8403-8409

Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures

A. Barnard, M. Calderon, A. Tschiche, R. Haag and D. K. Smith, Org. Biomol. Chem., 2012, 10, 8403 DOI: 10.1039/C2OB26584B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements