Issue 7, 2013

A convenient chemical-microbial method for developing fluorinated pharmaceuticals

Abstract

A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method of selecting optimum sites on pro-drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki–Miyaura coupling reactions, positioning the fluorine atom at the pre-determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4′-hydroxybiphenyl-4-carboxylic acid by C. elegans but, in contrast, the 4′-fluoro-analogue remained untransformed exemplifying the microbial oxidation – chemical fluorination concept. 2′-Fluoro- and 3′-fluoro-biphenyl-4-carboxylic acid were also transformed, but more slowly than the non-fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half-life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies.

Graphical abstract: A convenient chemical-microbial method for developing fluorinated pharmaceuticals

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2012
Accepted
21 Dec 2012
First published
02 Jan 2013

Org. Biomol. Chem., 2013,11, 1135-1142

A convenient chemical-microbial method for developing fluorinated pharmaceuticals

T. V. Bright, F. Dalton, V. L. Elder, C. D. Murphy, N. K. O'Connor and G. Sandford, Org. Biomol. Chem., 2013, 11, 1135 DOI: 10.1039/C2OB27140K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements