Issue 12, 2012

Three-dimensional graphenenanosheet encrusted carbon micropillar arrays for electrochemical sensing

Abstract

Integrating graphene onto three-dimensional (3D) microelectrodes is a plausible technique to significantly improve the sensitivity of electrochemical devices. However, the construction of graphene coated 3D microstructures has been a considerable challenge. In this paper, we present a simple methodology using electrostatic spray deposition (ESD) to conformally coat graphene onto 3D carbon micropillars that are fabricated by pyrolyzing finely patterned photoresist. During the ESD, changes in the critical parameters such as substrate temperature, deposition time, and nozzle to substrate distance have shown a significant effect on the morphology of the deposited graphene film. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250 μM and 5.5 mM. The ESD technique, with the flexibility of integrating a wide variety of functional nanomaterials onto complex 3D microstructures, is attractive in the field of electrochemistry and biotechnology.

Graphical abstract: Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing

Article information

Article type
Paper
Submitted
19 Jan 2012
Accepted
13 Mar 2012
First published
16 Mar 2012

Nanoscale, 2012,4, 3673-3678

Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing

V. Penmatsa, T. Kim, M. Beidaghi, H. Kawarada, L. Gu, Z. Wang and C. Wang, Nanoscale, 2012, 4, 3673 DOI: 10.1039/C2NR30161J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements