Issue 2, 2012

The properties of BiSb nanoribbons from first-principles calculations

Abstract

The structural, electronic and magnetic properties of BiSb nanoribbons (BSNRs) with different widths and edge configurations are investigated via the first-principles pseudopotential method. It is found that the pristine BSNRs with armchair edges (ABSNRs) are semiconductors and the band gaps exhibit a width dependent odd–even oscillation. In contrast, the pristine BSNRs with zigzag edges (ZBSNRs) are found to be metallic. When all the edge atoms are passivated by hydrogen, both the ABSNRs and ZBSNRs become semiconducting and the corresponding band gaps decrease monotonically with the increasing width. If, however, the edge atoms are partially passivated, the ABSNRs can be either semiconducting or metallic. Moreover, local magnetism appears when all the edge Sb atoms are passivated and there are one or more unsaturated Bi atoms. Using the nonequilibrium Green's function (NEGF) approach, we find that all the investigated odd-numbered ABSNRs have almost the same peak value of the power factor around the Fermi level. This is not the case for the even-numbered ABSNRs, where the peaks are twice that of when they are n-type doped. Our calculations indicate that BSNRs can have a very high room temperature figure of merit (ZT value), which makes them very promising candidates for thermoelectric applications.

Graphical abstract: The properties of BiSb nanoribbons from first-principles calculations

Article information

Article type
Paper
Submitted
26 Oct 2011
Accepted
28 Oct 2011
First published
21 Nov 2011

Nanoscale, 2012,4, 511-517

The properties of BiSb nanoribbons from first-principles calculations

H. Y. Lv, H. J. Liu, X. J. Tan, L. Pan, Y. W. Wen, J. Shi and X. F. Tang, Nanoscale, 2012, 4, 511 DOI: 10.1039/C1NR11585E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements