Issue 9, 2012

Micro-patterned porous substrates for cell-based assays

Abstract

In the search for new therapeutic chemicals, lab-on-a-chip systems have recently emerged as innovative and efficient tools for cell-based assays and high throughput screening. Here, we describe a novel, versatile and simple device for cell-based assays at the bench-top. We created spatial variations of porosity on the surface of a membrane filter by microcontact printing with a biocompatible polymer (PDMS). We called such systems Micro-Printed Membranes (μPM). Active compounds dispensed on the porous areas, where the membrane pores are not clogged by the polymer, can cross the membrane and reach cells growing on the opposite side. Only cells immediately below those porous areas could be stimulated by chemicals. We performed proof-of-principle experiments using Hoechst nuclear staining, calcein-AM cell viability assay and destabilization of the cytoskeleton organisation by cytochalasin B. Resulting fluorescent staining properly matched the drops positioning and no cross-contaminations were observed between adjacent tests. This well-less cell-based screening system is highly flexible by design and it enables multiple compounds to be tested on the same cell tissue. Only low sample volumes in the microlitre range are required. Moreover, chemicals can be delivered sequentially and removed at any time while cells can be monitored in real time. This allows the design of complex, sequential and combinatorial drug assays. μPMs appear as ideal systems for cell-based assays. We anticipate that this lab-on-chip device will be adapted for both manual and automated high content screening experiments.

Graphical abstract: Micro-patterned porous substrates for cell-based assays

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2011
Accepted
15 Feb 2012
First published
21 Mar 2012

Lab Chip, 2012,12, 1717-1722

Micro-patterned porous substrates for cell-based assays

F. Evenou, J. Di Meglio, B. Ladoux and P. Hersen, Lab Chip, 2012, 12, 1717 DOI: 10.1039/C2LC20696J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements