Issue 44, 2012

Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection

Abstract

We have developed a horizontally aligned carbon nanotube sensor that enables not only the specific detection of biomolecules with ultra-sensitivity, but also the quantitative characterization of binding affinity between biomolecules and/or interaction between a carbon nanotube and a biomolecule, for future applications in early diagnostics. In particular, we have fabricated horizontally aligned carbon nanotubes, which were functionalized with specific aptamers that are able to specifically bind to biomolecules (i.e. thrombin). Our detection system is based on scanning probe microscopy (SPM) imaging for horizontally aligned aptamer-conjugated carbon nanotubes (ACNTs) that specifically react with target biomolecules at an ultra-low concentration. It is shown that the binding affinity between thrombin molecule and ACNT can be quantitatively characterized using SPM imaging. It is also found that the smart carbon nanotube sensor coupled with SPM imaging permits us to achieve the high detection sensitivity even up to ∼1 pM, which is much higher than that of other bioassay methods. Moreover, we have shown that our method enables a quantitative study on small molecule-mediated inhibition of specific biomolecular interactions. In addition, we have shown that our ACNT-based system allows for the quantitative study of the effect of chemical environment (e.g. pH and ion concentration) on the binding affinity. Our study sheds light on carbon nanotube sensor coupled with SPM imaging, which opens a new avenue to early diagnostics and drug screening with high sensitivity.

Graphical abstract: Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2012
Accepted
29 Aug 2012
First published
29 Aug 2012

J. Mater. Chem., 2012,22, 23348-23356

Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection

K. Nam, K. Eom, J. Yang, J. Park, G. Lee, K. Jang, H. Lee, S. W. Lee, D. S. Yoon, C. Y. Lee and T. Kwon, J. Mater. Chem., 2012, 22, 23348 DOI: 10.1039/C2JM33688J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements