Issue 12, 2012

Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing

Abstract

In this work, a novel method for electrode modification based on inkjet-printing of electrochemically synthesized graphene-PEDOT:PSS (GP-PEDOT:PSS) nanocomposite is reported for the first time. GP-PEDOT:PSS dispersed solution is prepared for use as an ink by one-step electrolytic exfoliation from a graphite electrode. GP-PEDOT:PSS layers are then printed on screen printed carbon electrodes (SPCEs) by a commercial inkjet material printer (Dimatrix Inc.) and their electrochemical behaviors towards three common electroactive analytes, including hydrogen peroxide (H2O2), nicotinamide adenine dinucleotide (NAD+/NADH) and ferri/ferro cyanide (Fe(CN)63−/4−) redox couples, are characterized. It is found that the oxidation signals for H2O2, NADH and K2Fe(CN)6 of PEDOT:PSS modified and GP-PEDOT:PSS modified SPCEs are ∼2–4 and ∼3–13 times higher than those of unmodified SPCE, respectively. In addition, excellent analytical features with relatively wide dynamic ranges, high sensitivities and low detection limits have been achieved. Therefore, the inkjet-printed GP-PEDOT:PSS electrode is a promising candidate for advanced electrochemical sensing applications.

Graphical abstract: Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing

Additions and corrections

Article information

Article type
Paper
Submitted
17 Aug 2011
Accepted
11 Jan 2012
First published
08 Feb 2012

J. Mater. Chem., 2012,22, 5478-5485

Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing

C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham and A. Tuantranont, J. Mater. Chem., 2012, 22, 5478 DOI: 10.1039/C2JM14005E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements