Issue 22, 2012

In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries

Abstract

A Li-rich layered oxide with the formula Li[Li0.2Mn0.61Ni0.18Mg0.01]O2 was successfully synthesised and characterised using several in situ characterisation techniques. The electronic state and structural evolution of the material upon cycling were investigated using in situ XRD, EXAFS and XANES measurements. XANES and SQUID magnetic measurements showed that the initial material contains a certain amount of Mn3+ in a low spin configuration (average Mn oxidation state: +3.75). In situ measurements showed that the first part of the charge (up to 4.4 V vs. Li+/Li) corresponds to oxidation of the Mn3+ fraction, and that the oxidation of nickel occurs only later, on the main charge plateau at 4.5 V. Electrochemical and structural results tend to show that the main first-charge plateau is a two-phase process where a new phase is created. This new phase is structurally very close to the starting one, and could be an oxygen-deficient spinel with a = 8.25 Å. This process is non-reversible, and further cycling occurs in the new phase formed in situ.

Graphical abstract: In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries

Article information

Article type
Paper
Submitted
27 Feb 2012
Accepted
31 Mar 2012
First published
02 Apr 2012

J. Mater. Chem., 2012,22, 11316-11322

In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries

L. Simonin, J. Colin, V. Ranieri, E. Canévet, J. Martin, C. Bourbon, C. Baehtz, P. Strobel, L. Daniel and S. Patoux, J. Mater. Chem., 2012, 22, 11316 DOI: 10.1039/C2JM31205K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements