Issue 4, 2012

Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids

Abstract

We successfully explored, for the first time, the use of the w/o inverse miniemulsion route to prepare surfactant-functionalised nanocrystalline ZnO colloids. The adopted route exploits the micelles as nanoreactors for the precipitation of the desired oxide in a confined space. Triton X-100 (TritX-), sodium dodecyl sulfate (SDS-) and polyvinylpyrrolidone (PVP-) coated ZnO crystalline nanoparticles (NPs) have been obtained at room temperature (RT) with no need for post-treatment, by precipitation of zinc chloride with ammonium or sodium hydroxide into w/o inverse micelles. Their hydrodynamic diameter, evaluated by Dynamic Light Scattering (DLS), is about 35 nm. X-Ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Fourier Transform Infrared (FT-IR) spectroscopy and Thermogravimetric Analysis (TGA) have been used to characterize powders separated by miniemulsions. The NP inorganic core is constituted of wurtzite ZnO, with a high degree of crystallinity, as determined by XRD. XRD data and TEM images revealed the formation, in the case of ZnOTritX, of anisotropic plate-like crystallites, with an average diameter of 72 nm and a thickness of 15–20 nm. The RT photo-luminescent (PL) spectrum of ZnOPVP NPs shows a strong UV emission band, attributed to the free exciton recombination, with a relevant tail in the Vis region due to the presence of structural defects. The morphology of these systems, investigated by SEM, corresponds to a homogeneous dispersion of globular sponge structures in a compact and fibrous matrix.

Graphical abstract: Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2011
Accepted
20 Oct 2011
First published
30 Nov 2011

J. Mater. Chem., 2012,22, 1620-1626

Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids

P. Dolcet, M. Casarin, C. Maccato, L. Bovo, G. Ischia, S. Gialanella, F. Mancin, E. Tondello and S. Gross, J. Mater. Chem., 2012, 22, 1620 DOI: 10.1039/C1JM13301B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements