Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 26, 2012
Previous Article Next Article

Two-step hydrothermal synthesis of submicron Li1+xNi0.5Mn1.5O4−δ for lithium-ion battery cathodes (x = 0.02, δ = 0.12)

Author affiliations

Abstract

A facile two-step hydrothermal method is developed for the large-scale preparation of lithium nickel manganese oxide spinel as a cathode material for lithium ion batteries. In the reaction, nickel is introduced in a first step at neutral pH, followed by lithium insertion under base to form a product having composition Li1.02Ni0.5Mn1.5O3.88. The X-ray diffraction pattern and Raman spectroscopy of the synthesized material support a cubic Fd[3 with combining macron]m structure in which Ni and Mn are disordered on the 16d Wyckoff site, necessary for good cycling characteristics. XP spectroscopy and elemental analysis confirms that Mn remains reduced in the final product (ZMn = 3.82) and that two different chemical environments for Ni exist on the surface. SEM imaging shows a primary particle size of ∼200 nm, and galvanostatic cycling of the material vs. Li+/0 gives a reversible gravimetric capacity of ∼120 mA h g−1 at 1 C rate (147 mA g−1) with reversible cycling up to 1470 mA g−1, supported by rapid Li+ diffusion. The capacity fade at 1 C is substantial, 17.3% over the first 100 cycles between 3.4 and 5.0 V. However, when the voltage limits are altered, the capacity retention is excellent: nearly 100% when cycled either between 3.4 and 4.4 V (where oxygen vacancies are not electrochemically active) or 89% when cycled between 4.4 and 5.0 V (where the Jahn–Teller active Mn4+/3+ couple is not accessed).

Graphical abstract: Two-step hydrothermal synthesis of submicron Li1+xNi0.5Mn1.5O4−δ for lithium-ion battery cathodes (x = 0.02, δ = 0.12)

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 15 Feb 2012, accepted on 12 Apr 2012 and first published on 17 Apr 2012


Article type: Paper
DOI: 10.1039/C2DT30351E
Citation: Dalton Trans., 2012,41, 8067-8076
  •   Request permissions

    Two-step hydrothermal synthesis of submicron Li1+xNi0.5Mn1.5O4−δ for lithium-ion battery cathodes (x = 0.02, δ = 0.12)

    X. Hao, M. H. Austin and B. M. Bartlett, Dalton Trans., 2012, 41, 8067
    DOI: 10.1039/C2DT30351E

Search articles by author