Issue 7, 2012

Selective hydrogenation of acetophenone over nickel supported on titania

Abstract

The catalytic activity of Ni impregnated on various phases of titania, viz. rutile, anatase and high surface area, has been investigated for the hydrogenation of acetophenone. The TPR profile of Ni/rutile suggests a strong metal–support interaction. The observed catalytic activity order is Ni/rutile > Ni/anatase > Ni/TiO2. The greater activity of Ni/rutile is attributed to higher concentration of Ni on the surface and SMSI. The catalyst samples showed sintering of Ni when calcined at 900 °C, which resulted in a drop in their catalytic activity. The catalyst stability studies showed that activity is lost only marginally in rutile and anatase. The electronic interaction between Ni and rutile promotes the formation of electron enriched Ni–H species which interact with the carbonyl group of acetophenone. The hydrogenation proceeds with atom economy to form phenylethanol irrespective of the reaction conditions suggesting that these catalysts are of significant importance in green chemistry. The results obtained in this investigation clearly establish that Ni/rutile, a non-porous support, is better for this class of reaction.

Graphical abstract: Selective hydrogenation of acetophenone over nickel supported on titania

Article information

Article type
Paper
Submitted
04 Mar 2012
Accepted
03 Apr 2012
First published
03 Apr 2012

Catal. Sci. Technol., 2012,2, 1429-1436

Selective hydrogenation of acetophenone over nickel supported on titania

K. J. A. Raj, M. G. Prakash, R. Mahalakshmy, T. Elangovan and B. Viswanathan, Catal. Sci. Technol., 2012, 2, 1429 DOI: 10.1039/C2CY20134H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements