Jump to main content
Jump to site search

Issue 9, 2012
Previous Article Next Article

Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment

Author affiliations

Abstract

Alloys play a crucial role in several heterogeneous catalytic processes, and their applications are expected to rise rapidly. This is essentially related to the vast number of configurations and type of surface sites that multi-component materials can afford. It is well established that the chemical composition at the surface of an alloy usually differs from that in the bulk. This phenomenon, referred to as surface segregation, is largely controlled by the surface free energy. However, surface energy alone cannot safely predict the active surface state of a solid catalyst, since the contribution of other parameters such as size and support effects, as well as influence of the adsorbates, play a major role. This can lead to numerous surface configurations as for example over the length of a catalytic reactor, as the chemical potential of the gas phase changes continuously over the catalyst bed and hence different reactions may prevail at different catalyst bed segments. Thanks to the rapid improvement of the analytical surface science characterization techniques and theoretical methodologies, the potential effects induced by alloyed catalysts are better understood. For catalysis, the relevance of measurements performed on well-defined surfaces under idealized ultrahigh vacuum conditions has been questioned and studies in environments that closely resemble conditions of working alloy catalysts are needed. In this review we focus on experimental and theoretical studies related to in situ (operando) observations of surface segregation and phase separation phenomena taking place on the outermost surface layers of alloy catalysts. The combination of first principles theoretical treatment and in situ observation opens up new perspectives of designing alloy catalysts with tailored properties.

Graphical abstract: Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 25 Nov 2011, accepted on 23 Jan 2012 and first published on 26 Jan 2012


Article type: Minireview
DOI: 10.1039/C2CY00487A
Citation: Catal. Sci. Technol., 2012,2, 1787-1801
  •   Request permissions

    Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment

    S. Zafeiratos, S. Piccinin and D. Teschner, Catal. Sci. Technol., 2012, 2, 1787
    DOI: 10.1039/C2CY00487A

Search articles by author