Issue 6, 2012

Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction

Abstract

We report the preparation of Cu2O microparticles with different shapes, by simple hydrolyzation and reduction of copper acetate with glucose in a mixture of water–ethanol solvent. The effect of the synthesis conditions on the shape of the Cu2O microparticles and their catalytic properties in the Rochow reaction were investigated. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, temperature-programmed reduction, and thermogravimetric analysis. Cu2O microparticles with different shapes, such as hexahedron, ananas-like, sphere-like, and star-like shapes, with particle sizes of 2–4 μm, were obtained by tuning the volume ratio of water : ethanol. The hexahedron Cu2O microparticles were found to exhibit the best catalytic performance for the synthesis of dimethyldichlorosilane via the Rochow reaction. This work should be helpful in the design and development of novel copper catalysts for organosilane synthesis and understanding their catalytic roles.

Graphical abstract: Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction

Article information

Article type
Paper
Submitted
07 Feb 2012
Accepted
24 Feb 2012
First published
27 Feb 2012

Catal. Sci. Technol., 2012,2, 1207-1212

Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction

Z. Zhang, H. Che, J. Gao, Y. Wang, X. She, J. Sun, P. Gunawan, Z. Zhong and F. Su, Catal. Sci. Technol., 2012, 2, 1207 DOI: 10.1039/C2CY20070H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements