Issue 11, 2012

Small molecule semiconductors for high-efficiency organic photovoltaics

Abstract

Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor–acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure–property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

Graphical abstract: Small molecule semiconductors for high-efficiency organic photovoltaics

Article information

Article type
Critical Review
Submitted
18 Nov 2011
First published
28 Mar 2012

Chem. Soc. Rev., 2012,41, 4245-4272

Small molecule semiconductors for high-efficiency organic photovoltaics

Y. Lin, Y. Li and X. Zhan, Chem. Soc. Rev., 2012, 41, 4245 DOI: 10.1039/C2CS15313K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements