Issue 23, 2012

Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer

Abstract

Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure–Si heterojunction structures.

Graphical abstract: Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2011
Accepted
16 Apr 2012
First published
16 Apr 2012

Phys. Chem. Chem. Phys., 2012,14, 8391-8396

Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu and D. Wu, Phys. Chem. Chem. Phys., 2012, 14, 8391 DOI: 10.1039/C2CP23639G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements