Issue 48, 2012

Modeling thermoelectric transport in organic materials

Abstract

Thermoelectric energy converters can directly convert heat to electricity using semiconducting materials via the Seebeck effect and electricity to heat via the Peltier effect. Their efficiency depends on the dimensionless thermoelectric figure of merit of the material, which is defined as zT = S2σT/κ with S, σ, κ, and T being the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature respectively. Organic materials for thermoelectric applications have attracted great attention. In this review, we present our recent progress made in developing theories and computational schemes to predict the thermoelectric figure of merit at the first-principles level. The methods have been applied to model thermoelectric transport in closely-packed molecular crystals and one-dimensional conducting polymer chains. The physical insight gained in these studies will help in the design of efficient organic thermoelectric materials.

Graphical abstract: Modeling thermoelectric transport in organic materials

Article information

Article type
Perspective
Submitted
03 Aug 2012
Accepted
06 Sep 2012
First published
06 Sep 2012

Phys. Chem. Chem. Phys., 2012,14, 16505-16520

Modeling thermoelectric transport in organic materials

D. Wang, W. Shi, J. Chen, J. Xi and Z. Shuai, Phys. Chem. Chem. Phys., 2012, 14, 16505 DOI: 10.1039/C2CP42710A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements