Issue 18, 2012

Irreversible phototautomerization of o-phthalaldehyde through electronic relocation

Abstract

The potential energy surface for the intramolecular excited state hydrogen transfer (IESHT) in ortho-phthalaldehyde (OPA), which generates an enol ketene, has been studied with ab initio calculations (MS-CASPT2//CASSCF). The goal of our study is to establish the mechanistic factors that make the primary phototautomerization step irreversible. Similar to what we recently described for ortho-nitrobenzaldehyde (NBA) (Migani et al., Chem. Commun., 2011, 47, 6383–6385), the IESHT in OPA is characterized by the relocation of two electrons from the in-plane to the out-of-plane orbital system. Consistent with this, OPA has the same IESHT mechanism as NBA. The first step of ketene formation is the hydrogen transfer, which starts on an (n, π*) state. The reaction coordinate goes through a conical intersection with the ground state and leads to a biradical intermediate with a bent ketene moiety. The second step is the linearization of the ketene moiety, which is associated to a change in the electronic configuration from biradical to ketene. Because of the electron relocation, the reverse transfer is similar to a Woodward–Hoffmann forbidden process with a sizeable barrier. This makes the tautomerization irreversible and allows the ketene to react further to biphthalide and benzaldehyde. Together with our previous NBA study, we establish the electronic relocation mechanism as a new mechanism for IESHT. This mechanism explains the different reactivity of OPA and NBA compared to organic photoprotectors, where the IESHT is reversed on a very short time scale.

Graphical abstract: Irreversible phototautomerization of o-phthalaldehyde through electronic relocation

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2012
Accepted
05 Mar 2012
First published
13 Mar 2012

Phys. Chem. Chem. Phys., 2012,14, 6561-6568

Irreversible phototautomerization of o-phthalaldehyde through electronic relocation

Q. Li, A. Migani and L. Blancafort, Phys. Chem. Chem. Phys., 2012, 14, 6561 DOI: 10.1039/C2CP40359E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements