Issue 16, 2012

Tuning crystal-phase and shape of Fe2O3nanoparticles for catalytic applications

Abstract

The design and fabrication of solid nanomaterials is the core issue in heterogeneous catalysis to achieve desired performance. Traditionally, the main theme is to reduce the size of the catalyst particles as small as possible for maximizing the number of active sites. In recent years, the rapid advancement in materials science has enabled us to fabricate catalyst particles with tunable morphologies. Consequently, both size modulation and morphology control of catalyst particles at the nanometer level can be achieved independently or synergistically to optimize their catalytic performance. In particular, morphological control of catalyst nanoparticles can selectively expose reactive crystal planes, and hence drastically promote their reaction efficiency. We highlight, in this review article, the recent progress on crystal-phase and shape control of Fe2O3 nanomaterials that act as essential components in heterogeneous catalysts. We initially summarize the major synthetic strategies of shape-controlled α- and γ- Fe2O3 nanomaterials. We then survey morphology- and crystal-phase-dependent nanocatalysis of these ferric oxides for a couple of chemical reactions. In this context, we stress that the catalytic property of Fe2O3 nanomaterials is closely linked to the surface atomic configurations that are determined both by the shape and the crystal-phase. Finally, we provide our perspectives on the future development of Fe2O3 nanomaterials through tailoring their shape and crystal-phase. The fundamental understanding of crystal-phase- and morphology-tunable nanostructures that are enclosed by reactive facets is expected to direct the development of highly efficient nanocatalysts.

Graphical abstract: Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications

Article information

Article type
Highlight
Submitted
24 Jan 2012
Accepted
18 Apr 2012
First published
20 Apr 2012

CrystEngComm, 2012,14, 5107-5120

Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications

X. Mou, X. Wei, Y. Li and W. Shen, CrystEngComm, 2012, 14, 5107 DOI: 10.1039/C2CE25109D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements