Jump to main content
Jump to site search

Issue 10, 2011
Previous Article Next Article

Microcontact printing for co-patterning cells and viruses for spatially controlled substrate-mediated gene delivery

Author affiliations

Abstract

Spatial organization of gene expression is a crucial element in the development of complex native tissues, and the capacity to achieve spatially controlled gene expression profiles in a tissue engineering construct is still a considerable challenge. To give tissue engineers the ability to design specific, spatially organized gene expression profiles in an engineered construct, we have investigated the use of microcontact printing to pattern recombinant adeno-associated virus (AAV) vectors on a two dimensional surface as a first proof-of-concept study. AAV is a highly safe, versatile, stable, and easy-to-use gene delivery vector, making it an ideal choice for this application. We tested the suitability of four chemical surfaces (–CH3, –COOH, –NH2, and –OH) to mediate localized substrate-mediated gene delivery. First, polydimethylsiloxane stamps were used to create microscale patterns of various self-assembled monolayers on gold-coated glass substrates. Next, AAV particles carrying genes of interest and human fibronectin (HFN) were immobilized on the patterned substrates, creating a spatially organized arrangement of gene delivery vectors. Immunostaining studies reveal that –CH3 and –NH2 surfaces result in the most successful adsorption of both AAV and HFN. Lastly, HeLa cells were used to analyze viral transduction and spatial localization of gene expression. We find that –CH3, –COOH, and –NH2 surfaces support complete uniform cell coverage with high gene expression. Notably, we observe a synergistic effect between HFN and AAV for substrate-mediated gene delivery. Our flexible platform should allow for the specific patterning of various gene and shRNA cassettes, resulting in spatially defined gene expression profiles that may enable the generation of highly functional tissue.

Graphical abstract: Microcontact printing for co-patterning cells and viruses for spatially controlled substrate-mediated gene delivery

Back to tab navigation

Publication details

The article was received on 26 Oct 2010, accepted on 15 Mar 2011 and first published on 06 Apr 2011


Article type: Paper
DOI: 10.1039/C0SM01209B
Citation: Soft Matter, 2011,7, 4993-5001
  •   Request permissions

    Microcontact printing for co-patterning cells and viruses for spatially controlled substrate-mediated gene delivery

    K. I. McConnell, J. H. Slater, A. Han, J. L. West and J. Suh, Soft Matter, 2011, 7, 4993
    DOI: 10.1039/C0SM01209B

Search articles by author

Spotlight

Advertisements