Issue 7, 2011

Spatial mapping of the mechanical properties of the living retina using scanning force microscopy

Abstract

The retina is an active soft material, in which mechanosensitive cells are thought to respond to the local mechanical heterogeneity they encounter during development and adult physiological functioning. The retina is also constantly exposed to mechanical stress with shear and traction forces acting at its inner surface. Consequences of these forces depend on the tissue's resistance to deformation, which is characterized by its stiffness. However, currently there is a lack of high-resolution data on retinal mechanical properties. Here, we used scanning force microscopy to determine the apparent elastic modulus K of the retinal inner surface along the length of the eye with sub-millimetre resolution, and compared characteristic K values of the retinal quadrants. We found that the inner retina is a mechanically inhomogeneous tissue. Most elastic moduli were in the range of 940 to 1800 Pa; significant differences were found between areas less than 50 µm apart. To identify the origin of this mechanical inhomogeneity, we investigated the size and distribution of structures comprising the retinal surface: large cell bodies in the ganglion cell layer, nerve fibers, inner limiting membrane, and Müller cell endfeet. Our data suggest that the distribution of compliant nerve fiber bundles and stiff neuronal cell bodies contributes most to the mechanical properties of the inner retina. These data offer a basis for understanding cellular mechanoresistivity and -sensitivity in the retina as a mechanically active tissue, and they may help to understand mechanisms and consequences of a variety of retino-pathological processes and their surgical treatment.

Graphical abstract: Spatial mapping of the mechanical properties of the living retina using scanning force microscopy

Article information

Article type
Paper
Submitted
18 Sep 2010
Accepted
07 Dec 2010
First published
12 Jan 2011

Soft Matter, 2011,7, 3147-3154

Spatial mapping of the mechanical properties of the living retina using scanning force microscopy

K. Franze, M. Francke, K. Günter, A. F. Christ, N. Körber, A. Reichenbach and J. Guck, Soft Matter, 2011, 7, 3147 DOI: 10.1039/C0SM01017K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements