Issue 1, 2011

Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes

Abstract

Polymer-supported bilayer lipid membranes offer great opportunities for the investigation of functional membrane proteins. Here we present a new approach in this direction by introducing a thin hydrogel layer as a soft ‘cushion’ on indium–tin oxide (ITO), providing a smooth, functional surface to form the protein-tethered BLM (ptBLM). ITO was used as a transparent electrode, enabling simultaneous implementation of electrochemical and optical waveguide techniques. The hydrogel poly(N-(2-hydroxyethyl)acrylamide-co-5-acrylamido-1-carboxypentyl-iminodiacetate-co-4-benzoylphenyl methacrylate) (P(HEAAm-co-NTAAAm-co-MABP)) was functionalized with the nickel chelating nitrilotriacetic acid (NTA) groups, to which cytochrome c oxidase (CcO) from Paracoccus denitrificans was bound in a well defined orientation via a his-tag attached to its subunit I. Given that the mesh size of P(HEAAm-co-NTAAAm-co-MABP) was smaller than the protein size, binding to the hydrogel occurred only on the top of the layer. The lipid bilayer was formed around the protein by in situdialysis. Electrochemical impedance spectroscopy showed good electrical sealing properties with a resistance of ∼1 MΩ cm2. Furthermore, surface plasmon resonance optical waveguide spectroscopy (SPR/OWS) indicated an increased anisotropy of the system after formation of the lipid bilayer. Cyclic voltammetry in the presence of reduced cytochrome c demonstrated that CcO was incorporated into the gel-supported ptBLM in a functionally active form.

Graphical abstract: Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes

Article information

Article type
Paper
Submitted
02 Jul 2010
Accepted
01 Sep 2010
First published
06 Oct 2010

Soft Matter, 2011,7, 237-246

Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes

A. Kibrom, R. F. Roskamp, U. Jonas, B. Menges, W. Knoll, H. Paulsen and R. L. C. Naumann, Soft Matter, 2011, 7, 237 DOI: 10.1039/C0SM00618A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements