Jump to main content
Jump to site search

Issue 4, 2011
Previous Article Next Article

Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels

Author affiliations

Abstract

The possibility of forming self-organized films using charge-stabilized dispersions of cellulose I nanofibrils and microgel beads of poly-(N-isopropylacrylamide-co-acrylic acid) copolymer is presented. The build-up behavior and the properties of the layer-by-layer (LbL)-constructed films were studied using quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The morphology of the formed films was also characterized using atomic force microscopy (AFM) imaging. The applied methods clearly demonstrated the successful LbL-assembly of the monodisperse microgels and nanofibrils. The in situQCM-D measurements also revealed that contrary to the polyelectrolyte bound microgel particles, the nanofibrils-bound gel beads preserve their highly swollen state and do not suffer a partial collapse due to the lack of interdigitation of the oppositely charged components. To probe the accessibility of the gel beads in the formed films, the room temperature (∼25 °C) loading and release of a fluorescent dye (FITC) was also investigated. The incorporation of the cellulose nanofibrils into the multilayer resulted in an open structure that was found easily penetrable for the dye molecules even at constant room temperature, which is in sharp contrast with previously reported systems based on synthetic polyelectrolytes. The amount of dye released from the multilayer films could be fine-tuned with the number of bilayers. Finally, the thermoresponsivity of the films was also shown by triggering the burst release of the loaded dye when the film was collapsed.

Graphical abstract: Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels

Back to tab navigation

Publication details

The article was received on 30 Jun 2010, accepted on 18 Aug 2010 and first published on 06 Oct 2010


Article type: Paper
DOI: 10.1039/C0SM00610F
Citation: Soft Matter, 2011,7, 1369-1377
  •   Request permissions

    Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels

    R. Acciaro, C. Aulin, L. Wågberg, T. Lindström, P. M. Claesson and I. Varga, Soft Matter, 2011, 7, 1369
    DOI: 10.1039/C0SM00610F

Search articles by author

Spotlight

Advertisements