Issue 1, 2011

The formation of NH+ following the reaction of N22+ with H2

Abstract

The nitrogen molecular dication (N22+) has been proposed as a minor but significant component of the ionosphere of Saturn's moon Titan with an abundance comparable to that of several key monocations. It has also been suggested that the reactions of N22+ with H2 can provide a source of N2H2+ in Titan's atmosphere. This paper reports the results from experiments, using a position-sensitive coincidence technique, which reveal the chemical reactions forming pairs of monocations following collisions of the N22+ dication with H2(D2) at a centre-of-mass collision energy of 0.9(1.8) eV. These experiments show, in addition to single electron-transfer processes, a bond-forming pathway forming NH+ + H+ + N and allow an estimate to be made of the reaction cross section and the rate coefficient for this reaction. The correlations between the product velocities revealed by the coincidence experiments show that NH+ is formed via N atom loss from a primary encounter complex [N2H2]2+ to form NH22+, with this triatomic daughter dication then fragmenting to yield NH+ + H+. A computational investigation of stationary points on the lowest energy singlet and triplet [N2H2]2+ potential energy surfaces confirms the mechanistic deductions from the experiments and indicates that the formation of NH+ occurs solely, and efficiently, from the reaction of the c3Σ+u excited electronic state of N22+.

Graphical abstract: The formation of NH+ following the reaction of N22+ with H2

Article information

Article type
Edge Article
Submitted
22 Jun 2010
Accepted
12 Aug 2010
First published
24 Sep 2010

Chem. Sci., 2011,2, 150-156

The formation of NH+ following the reaction of N22+ with H2

J. F. Lockyear, C. L. Ricketts, M. A. Parkes and S. D. Price, Chem. Sci., 2011, 2, 150 DOI: 10.1039/C0SC00344A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements