Issue 11, 2011

Effect of main ligands on organic photovoltaic performance of Ir(iii) complexes

Abstract

The photovoltaic performance of devices fabricated using three iridium complexes (1, 2, and 3) containing different main ligands (1-phenylisoquinoline, (4-isoquinolin-1-yl-phenyl)diphenylamine, and 1-pyren-1-yl-isoquinoline for 1, 2, and 3, respectively) was investigated. Two different devices, one fabricated by spin coating and one produced by vacuum deposition, were tested. Among the bulk heterojunction solar cells (BHJCs) fabricated by spin coating, the cell fabricated using 2 had the highest power conversion efficiency (PCE, 0.50%). The PCEs of 1 and 3 were 0.43% and 0.34%, respectively. These results suggested that the superior hole-transport ability of the triphenylamine moiety in 2 was responsible for the high photovoltaic performance of the device fabricated using this complex. This assumption was confirmed by fabricating electron-only devices using the three Ir complexes and comparing the turn-on voltage of each device. The photovoltaic performance of device C fabricated by the vacuum co-deposition of 2 and C60 in a 50 nm-thick active layer was 50% higher than that of device A (bilayer heterojunction solar cell) and device B (fabricated by the co-deposition of 2 and C60 with a 30 nm-thick active layer).

Graphical abstract: Effect of main ligands on organic photovoltaic performance of Ir(iii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2011
Accepted
26 Jul 2011
First published
18 Aug 2011

New J. Chem., 2011,35, 2557-2563

Effect of main ligands on organic photovoltaic performance of Ir(III) complexes

W. Lee, T. Kwon, J. Kwon, J. Kim, C. Lee and J. Hong, New J. Chem., 2011, 35, 2557 DOI: 10.1039/C1NJ20446G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements