Jump to main content
Jump to site search

Issue 14, 2011
Previous Article Next Article

Supported lipid bilayer microarrays created by non-contact printing

Author affiliations

Abstract

Arrays of supported lipid bilayers (SLBs) provide great potential for future drug development and multiplexed biological research, but are difficult to prepare due to the sensitivity of both the lipid and protein structural arrangement to air exposure. A novel way to produce arrays of SLBs is presented based on non-contact dispensing of vesicles to a substrate through a thin surface confined water film. The approach presents many degrees of freedom since it is not limited to a specific substrate, lipid composition, linker or controlled environment. The method allows adjustment of spot size (180–360 μm) by repeated dispensing as well as control over the composition of the spots and subsequent analytes. SLB formation by vesicle adsorption and rupture allows for incorporation of membrane proteins through pre-formed proteoliposomes. Dispensing through a dip-and-rinse water film avoids contamination, disruptive drying and the need for complex buffer compositions. Furthermore, no humidity control is necessary which simplifies the production step and prolongs the life-time of the spotting system. We characterize the method with respect to control over spot size, bilayer mobility and the formation process as well as demonstrate the possibility to fuse bilayer spots with subsequently added vesicles. Since complex lipid compositions and multiple spotting nozzles can be used, this novel technique is expected to be a promising platform for future applications, e.g.patterning to monitor peptide/proteinlipid interactions, for glycomics using glycolipids or lipopolysaccharides, and to study mixing of spatially confined lipid membranes.

Graphical abstract: Supported lipid bilayer microarrays created by non-contact printing

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 26 Jan 2011, accepted on 21 Apr 2011, published on 27 May 2011 and first published online on 27 May 2011


Article type: Paper
DOI: 10.1039/C1LC20073A
Citation: Lab Chip, 2011,11, 2403-2410
  •   Request permissions

    Supported lipid bilayer microarrays created by non-contact printing

    S. Kaufmann, J. Sobek, M. Textor and E. Reimhult, Lab Chip, 2011, 11, 2403
    DOI: 10.1039/C1LC20073A

Search articles by author