Issue 22, 2011

Microfluidic waves

Abstract

The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m sāˆ’1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30.

Graphical abstract: Microfluidic waves

Article information

Article type
Paper
Submitted
21 Sep 2010
Accepted
18 Jul 2011
First published
30 Sep 2011

Lab Chip, 2011,11, 3846-3854

Microfluidic waves

M. Utz, M. R. Begley and H. Haj-Hariri, Lab Chip, 2011, 11, 3846 DOI: 10.1039/C0LC00426J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements