Issue 47, 2011

In search of enhanced electrolyte materials: a case study of doubly doped ceria

Abstract

Various compositions of gadolinium-praseodymium doubly doped ceria (GPDC) have been studied to elucidate the effect of two co-dopants in enhancing the ionic conductivity. A Kinetic Lattice Monte Carlo (KLMC) model of vacancy diffusion in GPDC has been developed, which uses activation energies obtained from DFT-calculations for vacancy migration in gadolinium-doped ceria (GDC) and praseodymium-doped ceria (PDC) as input. In order to identify the optimal composition of electrolyte materials for solid oxide fuel cells, three different classes of GPDC were studied; (i) Gd rich, (ii) Pr rich and (iii) equal Gd-Pr content. It is assumed that the Gd and Pr are 100% ionized to Gd3+ and Pr3+. KLMC simulations showed that GPDC compositions with ≈0.20 mole fraction to 0.25 mole fraction of total dopant content exhibited the maximum ionic conductivity. Among the three classes studied, Gd-rich GPDC is found to have the highest conductivity for temperatures ranging from 873 K to 1073 K. The optimal co-doped compositions were found to be slightly temperature dependent. Analysis of vacancy migration pathways for millions of jump events show that GPDC has a slightly higher number of next neighbor jumps, which seems to explain most of the reason why GPDC has a higher ionic conductivity than PDC or GDC. The current KLMC calculations present a novel approach to study doubly doped ceria, as so far the theoretical results for ceria-based materials have been limited to mono-doped ceria.

Graphical abstract: In search of enhanced electrolyte materials: a case study of doubly doped ceria

Article information

Article type
Paper
Submitted
06 Sep 2011
Accepted
17 Oct 2011
First published
28 Oct 2011

J. Mater. Chem., 2011,21, 18991-18997

In search of enhanced electrolyte materials: a case study of doubly doped ceria

P. P. Dholabhai, J. B. Adams, P. A. Crozier and R. Sharma, J. Mater. Chem., 2011, 21, 18991 DOI: 10.1039/C1JM14417K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements