Issue 4, 2011

Nanostructure design of amorphous FePO4 facilitated by a virus for 3 V lithium ion battery cathodes

Abstract

Amorphous iron phosphate nanowires with diameters of 10 to 20 nm were synthesized using genetically engineered M13 virus for lithium ion battery cathodes. Hydrolysis of Fe3+ ions has been effectively suppressed by forming conjugates with the virus and synthesizing at low temperature, 4 °C. The M13 virus biological template facilitated elaborate nanostructure design and environmentally benign, low temperature synthesis. By implementing heterostructures with silver, we demonstrated experimentally that uniformly distributed Ag nanoparticles throughout the whole structure appeared more advantageous than locally limited network formation by Ag nanowires in enhancing overall electronic conductivity of the entire system, thereby improving battery performances. Electrochemical properties were further improved by dehydration of structural waters. The synergetic use of biological template and synthetic chemistry could enable the synthesis of anhydrous a-FePO4 without thermal treatment via low-temperature and eco-efficient chemistry. The first discharge capacity at a discharge rate of C/10 and 1C was 165 mA h g−1 (93% of the theoretical value) and 110 mA h g−1, respectively. These electrochemical properties are comparable to the best reported values for a-FePO4 synthesized at high temperature. In this study, we set the important step for the practical applications of biological approaches in designing and fabricating energy devices, which may be a promising alternative to the traditional processing techniques that consume energy and are costly.

Graphical abstract: Nanostructure design of amorphous FePO4 facilitated by a virus for 3 V lithium ion battery cathodes

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2010
Accepted
23 Sep 2010
First published
12 Nov 2010

J. Mater. Chem., 2011,21, 1033-1039

Nanostructure design of amorphous FePO4 facilitated by a virus for 3 V lithium ion battery cathodes

Y. J. Lee and A. M. Belcher, J. Mater. Chem., 2011, 21, 1033 DOI: 10.1039/C0JM02544E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements