Issue 7, 2011

Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells

Abstract

Cross-linked polybenzimidazole membranes were obtained by heating at 160 °C, using 4,4′-diglycidyl(3,3′,5,5′-tetramethylbiphenyl) epoxy resin (TMBP) as the cross-linker. The cross-linking reaction temperature was determined by DSC and the successful completion of the cross-linking reaction was shown by FTIR and solubility tests. The cross-linked membranes showed high proton conductivity and strong mechanical properties, as well as low swelling after immersion in 85% phosphoric acid at 90 °C. For instance, the membrane with a cross-linker content weight percent of 20% (PBI-TMBP 20%) with a PA doping level of 4.1 exhibited a proton conductivity of 0.010 S cm−1 and a low swelling volume of 50%. Moreover, the cross-linked membranes showed excellent oxidative stability. The PBI-TMBP 20% cross-linked membrane tested in Fenton's reagent (3% H2O2 solution, 4 ppm Fe2+, 70 °C) kept its shape for more than 480 h and did not break. In particular, the proton conductivity of the PA-PBI-TMBP 20% membrane after Fenton's test (30% H2O2, 20 ppm Fe2+, 85 °C) remained at a high level of 0.009 S cm−1. This investigation proved that cross-linking is a very effective approach for improving the performance of proton exchange membranes.

Graphical abstract: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells

Article information

Article type
Paper
Submitted
28 Jul 2010
Accepted
04 Nov 2010
First published
20 Dec 2010

J. Mater. Chem., 2011,21, 2187-2193

Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells

M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C. M. Lew and H. Na, J. Mater. Chem., 2011, 21, 2187 DOI: 10.1039/C0JM02443K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements