Volume 148, 2011

Prediction of nitroxide spin labelEPR spectra from MD trajectories: application to myoglobin

Abstract

We report the prediction of motional EPR spectra of the metalloprotein sperm whale myoglobin spin labelled with nitroxide directly from Molecular Dynamics (MD) simulations at the atomistic scale. We show that an accurate simulation of EPR spectra can be achieved from a single MD trajectory which is in excellent agreement with experiment. Simulations have been carried out using a general method reported previously by us for the simulation of EPR spectra form single dynamical trajectories. Our calculations demonstrate the complex nature of the dynamics of a spin label which is a superposition of the fast librational motions around dihedral states, of slow conformational flips among different rotameric states and of the slow rotational diffusion of the protein itself. The MD-EPR methodology reported does not require any additional stochastic modelling using adjustable parameters and opens, for the first time, the prospect of the simulation of EPR spectra entirely from single MD trajectories. Such a technique not only simplifies the interpretation and analysis of EPR spectra but also opens the possibility, for example, of “computer engineering” of spin-labelled proteins with the desired properties prior to actual EPR experiment.

Article information

Article type
Paper
Submitted
01 Apr 2010
Accepted
28 Apr 2010
First published
15 Sep 2010

Faraday Discuss., 2011,148, 283-298

Prediction of nitroxide spin label EPR spectra from MD trajectories: application to myoglobin

E. Kuprusevicius, G. White and V. S. Oganesyan, Faraday Discuss., 2011, 148, 283 DOI: 10.1039/C004855K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements