Issue 12, 2011

Impact of a NO2-regenerated diesel particulate filter on PAH and NPAH emissions from an EURO IV heavy duty engine

Abstract

In this study the emissions of polycyclic aromatic hydrocarbons (PAH) and their nitro-derivates (NPAH) from a modern heavy duty engine were analysed. Focus was on the effects of the aftertreatment system. It consisted of an oxidation catalyst coupled to a diesel particulate filter (DPF). In such systems the process of PAH and NPAH degradation may compete with the NPAH formation. Scope of the study was to explain to which extent modern DPF could support the formation of highly mutagenic NPAH by nitration of pre-existing PAH. It was found that the diesel trap reduced the total amount of PAH and NPAH emitted both at low load and high load. Nevertheless, at low load the lower temperatures and the higher NO2 concentration furnished better conditions for PAH nitration while they were more adverse to NPAH degradation. These effects were NPAH-specific. For these reasons, some NPAH like 3-nitrophenanthrene were still efficiently degraded but others were newly formed. For instance emissions of the highly toxic 1-benzo(a)pyrene and 6-nitrobenzo(a)pyrene where increased by a factor 15 at low load and, even if in lower amount, were formed also at high load. The super-mutagen 1,6-dinitropyrene, which was not present in raw exhaust, could be found only after the DPF, indicating a new formation. In regard to emissions from the active regeneration mode, tremendous high emissions of 1-nitropyrene were reported. More accurate investigation of such a regeneration mode would be of great interest for the future.

Graphical abstract: Impact of a NO2-regenerated diesel particulate filter on PAH and NPAH emissions from an EURO IV heavy duty engine

Article information

Article type
Paper
Submitted
16 Jul 2011
Accepted
27 Sep 2011
First published
25 Oct 2011

J. Environ. Monit., 2011,13, 3373-3379

Impact of a NO2-regenerated diesel particulate filter on PAH and NPAH emissions from an EURO IV heavy duty engine

M. Carrara and R. Niessner, J. Environ. Monit., 2011, 13, 3373 DOI: 10.1039/C1EM10573F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements