Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 8, 2011
Previous Article Next Article

The discharge rate capability of rechargeable Li–O2 batteries

Author affiliations

Abstract

The O2electrode in Li–O2cells was shown to exhibit gravimetric energy densities (considering the total weight of oxygen electrode in the discharged state) four times that of LiCoO2 with comparable gravimetric power. The discharge rate capability of Au-catalyzed Vulcan carbon and pure Vulcan carbon (VC) as the O2electrode was studied in the range of 100 to 2000 mA gcarbon−1. The discharge voltage and capacity of the Li−O2 cells were shown to decrease with increasing rates. Unlike propylene carbonate based electrolytes, the rate capability of Li−O2 cells tested with 1,2-dimethoxyethane was found not to be limited by oxygen transport in the electrolyte. X-Ray diffraction (XRD) showed lithium peroxide as the discharge product and no evidence of Li2CO3 and LiOH was found. It is hypothesized that higher discharge voltages of cells with Au/C than VC at low rates could have originated from higher oxygen reduction activity of Au/C. At high rates, higher discharge voltages with Au/C than VC could be attributed to faster lithium transport in nonstoichiometric and defective lithium peroxide formed upon discharge, which is supported by XRD and X-ray absorption near edge structure O and Li K edge data.

Graphical abstract: The discharge rate capability of rechargeable Li–O2 batteries

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 20 Apr 2011, accepted on 24 May 2011 and first published on 04 Jul 2011


Article type: Paper
DOI: 10.1039/C1EE01500A
Citation: Energy Environ. Sci., 2011,4, 2999-3007
  •   Request permissions

    The discharge rate capability of rechargeable Li–O2 batteries

    Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin and Y. Shao-Horn, Energy Environ. Sci., 2011, 4, 2999
    DOI: 10.1039/C1EE01500A

Search articles by author