The new, potentially ambidentate heterocyclic ligand 2,3-bis(1-methylimidazol-2-yl)quinoxaline (bmiq) was obtained from 2,3-bis(1-methylimidazol-2-yl)glyoxal and 1,2-diaminobenzene. Its coordination to PtCl2 and to the isoelectronic [AuCl2]+ in [AuCl2(bmiq)](AuCl4) occurs via the imine N donors of the imidazolyl groups, leading to the formation of seven-membered chelate rings with boat conformation. According to the spectroelectrochemistry (UV-vis-NIR, EPR), the reversible electron addition to the [PtCl2(bmiq)] and the free ligand takes place in the (non-coordinated) quinoxaline part of the molecule, similarly as for related complexes of dipyrido[3,2-a:2′,3′-c]phenazines (dppz), 2,3-bis(2-pyridyl)quinoxalines (bpq) and 2,3-bis(dialkylphosphino)quinoxalines (QuinoxP). DFT calculations confirm the experimental results (structures, spectroscopy) and also point to the coordination potential of the quinoxaline N atoms. The electron addition to [AuCl2(bmiq)]+ takes place not at the ligand but at the metal site, according to experimental and DFT results.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?